Example Condition Files

Ethane pyrolysis (Minimal)

This is the minimal example file characterizing a very basic system for ethane pyrolysis and should run quickly if RMG is set up properly. It does not include any calculation of pressure-dependent reaction rates.

//tracks the decomposition of pure ethane, without any pressure-dependent reactions.

Database: RMG_database

PrimaryThermoLibrary:
Name: RMG-minimal
Location: primaryThermoLibrary
END

PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END

ReadRestart: no
WriteRestart: no

TemperatureModel: Constant (K) 1350
PressureModel: Constant (atm) 1 

InitialStatus:

C2H6 (mol/cm3) 1.0 
1 C 0 {2,S}
2 C 0 {1,S}

END

InertGas:
N2 (mol/cm3) 0.0 
Ar (mol/cm3) 0.0 
END

SpectroscopicDataEstimator: off
PressureDependence: off

FinishController:
(1) Goal Conversion: C2H6 0.9
(2) Error Tolerance: 0.1

DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1e-18
Rtol: 1e-8

PrimaryKineticLibrary:
END

ReactionLibrary:
END

SeedMechanism:
END

ChemkinUnits:
A: moles
Ea: kcal/mol

1,3-hexadiene pyrolysis

This example models the pyrolysis of 1,3-hexadiene and demonstrates the effect of turning on the pressure-dependence module within RMG.

//tracks the consumption of 1,3-hexadiene in presence of N2, Methane and hydrogen.
//notice the primary reaction library is turned off because this is not 
//a oxidation mechanism. Also the sensitivity analysis section is missing 
//because we are using the dassl solver.

//This example should take roughly 2-3 minutes to run to completion.


Database: RMG_database

//MaxCarbonNumberPerSpecies: 
//MaxOxygenNumberPerSpecies: 
//MaxRadicalNumberPerSpecies: 
//MaxSulfurNumberPerSpecies: 
//MaxSiliconNumberPerSpecies: 
//MaxHeavyAtomPerSpecies:

PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END

PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END

ReadRestart: no
WriteRestart: yes

TemperatureModel: Constant (K) 1350
PressureModel: Constant (atm) 1 

InitialStatus:

HXD13 (mol/cm3) 6.829e-4
1 C 0 {2,D}
2 C 0 {1,D} {3,S}
3 C 0 {2,S} {4,D}
4 C 0 {3,D} {5,S}
5 C 0 {4,S} {6,S}
6 C 0 {5,S} 

CH4 (mol/cm3) 0.104
1 C 0

H2 (mol/cm3) 1.56e-2
1 H 0 {2,S}
2 H 0 {1,S}

END

InertGas:
N2 (mol/cm3) 0.8797
Ar (mol/cm3) 0.0e-6
END

SpectroscopicDataEstimator: FrequencyGroups
PressureDependence: ModifiedStrongCollision
PDepKineticsModel: Chebyshev 6 4
TRange: (K) 300.0 2000.0 8
PRange: (bar) 0.01 100.0 5
DecreaseGrainSize: yes

FinishController:
(1) Goal Conversion: HXD13 0.9
(2) Error Tolerance: 0.5

DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1e-18
Rtol: 1e-8

PrimaryKineticLibrary:
//Name: RMG-example
//Location: Example
END

ReactionLibrary:
//Name: GRIMech3.0
//Location: GRI-Mech3.0
END


SeedMechanism:
//Name: Leeds
//Location: combustion_core/version5
//GenerateReactions: yes
//Name: GRIMech3.0
//Location: GRI-Mech3.0
//GenerateReactions: yes
END

ChemkinUnits:
A: moles
Ea: kcal/mol

Butane oxidation with pruning

This example illustrates the use of pruning to reduce model generation time, as well as the simulation of as multiple reaction conditions in a single condition file. The example should take at least several hours to run and may require allocation of a large amount of memory (e.g. 1500 MB) to complete:

//tracks the consumption of Butane in presence of O2.

//This example illustrates the use of pruning, as well
//as multiple reaction conditions. The example should
//take at least several hours to run and may require allocation
//of a large amount of memory (e.g. 1500 MB) to complete.

Database: RMG_database

//MaxCarbonNumberPerSpecies: 
//MaxOxygenNumberPerSpecies: 
//MaxRadicalNumberPerSpecies: 
//MaxSulfurNumberPerSpecies: 
//MaxSiliconNumberPerSpecies: 
//MaxHeavyAtomPerSpecies:

PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END

PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END

ForbiddenStructures:


END

ReadRestart: no
WriteRestart: yes

TemperatureModel: Constant (K) 800 1000 2000 
PressureModel: Constant (atm)  20 30 40   

InitialStatus:

C4H10 (mol/cm3)   1     2
1 C 0 {2,S}
2 C 0 {1,S} {3,S}
3 C 0 {2,S} {4,S}
4 C 0 {3,S}

O2 (mol/cm3)     6.5   5.5
1 O 1 {2,S}
2 O 1 {1,S}

END

InertGas:
N2  (mol/cm3)     24.399  24.399
Ar  (mol/cm3)        0      0
END

SpectroscopicDataEstimator: off
PressureDependence: off
//PressureDependence: ModifiedStrongCollision
//PDepKineticsModel: Chebyshev

FinishController:
(1) Goal Conversion: C4H10 0.7
(2) Error Tolerance: 0.5

DynamicSimulator: DASSL
//Conversions: AUTO
Conversions: AUTOPRUNE
TerminationTolerance: 1000
PruningTolerance: 1.0E-18
MinSpeciesForPruning: 1000
MaxEdgeSpeciesAfterPruning: 10000
Atol: 1e-18
Rtol: 1e-8

PrimaryKineticLibrary:
//Name: RMG-example
//Location: RMG_database/primaryReactionLibrary/Example
END

ReactionLibrary:

END

SeedMechanism:
//Name: Leeds
//Location: RMG_database/SeedMechanisms/combustion_core/version5
//GenerateReactions: yes
Name: GRIMech3.0
Location: GRI-Mech3.0
GenerateReactions: yes
//Name: Glarborg
//Location: RMG_database\SeedMechanisms\Glarborg\C3_light
//GenerateReactions: yes

END

ChemkinUnits:
A: moles
Ea: kcal/mol

Cyclopropane pyrolysis with quantum mechanics calculations

This is an example illustrating the use of on-the-fly thermo calculations. Gaussian03 is used to estimate thermodynamic properties of cyclic species, like cyclopropane. In particular, the semi-empirical PM3 method, with RRHO treatment of partition functions is used. Without this feature, RMG would try to estimate thermodynamic properties of cyclic species using the typical Benson groups, and would only apply an appropriate ad hoc ring correction if it is in Ring_Library.txt. The example should take roughly 45 minutes to run and requires several additional dependencies, as described in the installation documentation.

//This is an example illustrating the use of on-the-fly thermo
//calculations. Gaussian03 is used to estimate thermodynamic
//properties of cyclic species, like cyclopropane. In particular,
//the semi-empirical PM3 method, with RRHO treatment of partition
//functions is used. Without this feature, RMG would try to estimate
//thermodynamic properties of cyclic species using the typical Benson
//groups, and would only apply an appropriate ad hoc ring correction
//if it is in Ring_Library.txt. The example should take roughly 45
//minutes to run and requires several additional dependencies, as
//described in the documentation.

Database: RMG_database

//MaxCarbonNumberPerSpecies: 
//MaxOxygenNumberPerSpecies: 
//MaxRadicalNumberPerSpecies: 
//MaxSulfurNumberPerSpecies: 
//MaxSiliconNumberPerSpecies: 
//MaxHeavyAtomPerSpecies:

PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END

PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END

ReadRestart: no
WriteRestart: no

TemperatureModel: Constant (K) 1350
PressureModel: Constant (atm) 1 

//thermo strategy? BensonOnly/QMforCyclics/Hybrid
ThermoMethod: QMforCyclics Gaussian03
MaxRadNumForQM: 0
CheckConnectivity: check
KeepQMFiles: no

InitialStatus:

Cyclopropane (mol/cm3) 6.829e-4
1 C 0 {2,S} {3,S}
2 C 0 {1,S} {3,S}
3 C 0 {1,S} {2,S}

END

InertGas:
N2 (mol/cm3) 0.8797
Ar (mol/cm3) 0.0e-6
END

SpectroscopicDataEstimator: off
PressureDependence: off 

FinishController:
(1) Goal Conversion: Cyclopropane 0.9
(2) Error Tolerance: 0.1

DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1e-18
Rtol: 1e-8

PrimaryKineticLibrary:
END

ReactionLibrary:
END

SeedMechanism:
END

ChemkinUnits:
A: moles
Ea: kcal/mol

Octane liquid phase autoxidation

This example showcases RMG’s ability to model liquid-phase reaction systems.

// autoxidation of octane


Database: RMG_database

PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END

PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END

ReadRestart: no
WriteRestart: no

TemperatureModel: Constant (K) 500
PressureModel: Constant (atm) 1 

/// THESE ARE THE IMPORTANT PARTS FOR LIQUID SIMULATIONS
EquationOfState: Liquid
Solvation: on octane
Diffusion: on 1.0e-3

InitialStatus:

Octane (mol/cm3) 6.154e-3 
1 C 0 {3,S} 
2 C 0 {4,S} 
3 C 0 {1,S} {5,S} 
4 C 0 {2,S} {6,S} 
5 C 0 {3,S} {7,S} 
6 C 0 {4,S} {8,S} 
7 C 0 {5,S} {8,S} 
8 C 0 {6,S} {7,S} 

O2 (mol/cm3) 4.953e-6  ConstantConcentration
1 O 1 {2,S}
2 O 1 {1,S}

END

InertGas:
N2 (mol/cm3) 0.0
Ar (mol/cm3) 0.0
END

SpectroscopicDataEstimator: off
PressureDependence: off

// Change Goal ReactionTime:  10 (min) for a more realistic simulation
FinishController:
(1) Goal ReactionTime:  10 (sec)
(2) Error Tolerance: 0.5

DynamicSimulator: DASSL
TimeStep: AUTO
Atol: 1e-18
Rtol: 1e-8

PrimaryKineticLibrary:
END

ReactionLibrary:
END

SeedMechanism:
END

ChemkinUnits:
A: moles
Ea: kcal/mol

Diethylsulfide and H2O desulfurization

RMG 4.0+ can now handle systems involving sulfur-containing compounds. This example models the desulfurization of diethylsulfide in the presence of water.

// Diethylsulfide + H2O desulfurization

Database: RMG_database

MaxCarbonNumberPerSpecies: 18
MaxOxygenNumberPerSpecies: 3
MaxSulfurNumberPerSpecies: 3

PrimaryThermoLibrary:
Name: RMG_Default
Location: primaryThermoLibrary
Name: Sulfur_Thermo
Location: SulfurLibrary
Name: DFT_QCI
Location: DFT_QCI_thermo
END

PrimaryTransportLibrary:
END

ForbiddenStructures:
END

ReadRestart: No
WriteRestart: Yes

TemperatureModel: Constant (K) 673
PressureModel: Constant (Bar) 244.3

InChIGeneration: off

InitialStatus:

(1) DES (mol/cm3) 0.000363
1 C 0 {2,S}
2 C 0 {1,S} {3,S}
3 S 0 {2,S} {4,S}
4 C 0 {3,S} {5,S}
5 C 0 {4,S}

(2) H2O (mol/cm3) 0.0040
1 O 0

(3) ethanethial (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,D}
3 S 0 {2,D}

(4) hydro-ET (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,S} {4,S}
3 S 0 {2,S}
4 O 0 {2,S}

(5) hydro-ET-rad (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,S} {4,S}
3 S 1 {2,S}
4 O 0 {2,S}

(6) ethanal (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,D}
3 O 0 {2,D}

END

InertGas:
Ar (mol/cm3)        0
N2 (mol/cm3)        0
He (mol/cm3)        0
END

SpectroscopicDataEstimator: off
PressureDependence: off

FinishController:
(1) Goal Conversion: DES 0.10
(2) Error Tolerance: 0.50

DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1E-18
Rtol: 1E-8

PrimaryKineticLibrary:
END


ReactionLibrary:
END

SeedMechanism:
Name: Hydrolysis
Location: Sulfur/Thial_Hydrolysis
GenerateReactions: no
END

ChemkinUnits:
Verbose: off
A: moles
Ea: kcal/mol