This is the minimal example file characterizing a very basic system for ethane pyrolysis and should run quickly if RMG is set up properly. It does not include any calculation of pressure-dependent reaction rates.
//tracks the decomposition of pure ethane, without any pressure-dependent reactions.
Database: RMG_database
PrimaryThermoLibrary:
Name: RMG-minimal
Location: primaryThermoLibrary
END
PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END
ReadRestart: no
WriteRestart: no
TemperatureModel: Constant (K) 1350
PressureModel: Constant (atm) 1
InitialStatus:
C2H6 (mol/cm3) 1.0
1 C 0 {2,S}
2 C 0 {1,S}
END
InertGas:
N2 (mol/cm3) 0.0
Ar (mol/cm3) 0.0
END
SpectroscopicDataEstimator: off
PressureDependence: off
FinishController:
(1) Goal Conversion: C2H6 0.9
(2) Error Tolerance: 0.1
DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1e-18
Rtol: 1e-8
PrimaryKineticLibrary:
END
ReactionLibrary:
END
SeedMechanism:
END
ChemkinUnits:
A: moles
Ea: kcal/mol
This example models the pyrolysis of 1,3-hexadiene and demonstrates the effect of turning on the pressure-dependence module within RMG.
//tracks the consumption of 1,3-hexadiene in presence of N2, Methane and hydrogen.
//notice the primary reaction library is turned off because this is not
//a oxidation mechanism. Also the sensitivity analysis section is missing
//because we are using the dassl solver.
//This example should take roughly 2-3 minutes to run to completion.
Database: RMG_database
//MaxCarbonNumberPerSpecies:
//MaxOxygenNumberPerSpecies:
//MaxRadicalNumberPerSpecies:
//MaxSulfurNumberPerSpecies:
//MaxSiliconNumberPerSpecies:
//MaxHeavyAtomPerSpecies:
PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END
PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END
ReadRestart: no
WriteRestart: yes
TemperatureModel: Constant (K) 1350
PressureModel: Constant (atm) 1
InitialStatus:
HXD13 (mol/cm3) 6.829e-4
1 C 0 {2,D}
2 C 0 {1,D} {3,S}
3 C 0 {2,S} {4,D}
4 C 0 {3,D} {5,S}
5 C 0 {4,S} {6,S}
6 C 0 {5,S}
CH4 (mol/cm3) 0.104
1 C 0
H2 (mol/cm3) 1.56e-2
1 H 0 {2,S}
2 H 0 {1,S}
END
InertGas:
N2 (mol/cm3) 0.8797
Ar (mol/cm3) 0.0e-6
END
SpectroscopicDataEstimator: FrequencyGroups
PressureDependence: ModifiedStrongCollision
PDepKineticsModel: Chebyshev 6 4
TRange: (K) 300.0 2000.0 8
PRange: (bar) 0.01 100.0 5
DecreaseGrainSize: yes
FinishController:
(1) Goal Conversion: HXD13 0.9
(2) Error Tolerance: 0.5
DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1e-18
Rtol: 1e-8
PrimaryKineticLibrary:
//Name: RMG-example
//Location: Example
END
ReactionLibrary:
//Name: GRIMech3.0
//Location: GRI-Mech3.0
END
SeedMechanism:
//Name: Leeds
//Location: combustion_core/version5
//GenerateReactions: yes
//Name: GRIMech3.0
//Location: GRI-Mech3.0
//GenerateReactions: yes
END
ChemkinUnits:
A: moles
Ea: kcal/mol
This example illustrates the use of pruning to reduce model generation time, as well as the simulation of as multiple reaction conditions in a single condition file. The example should take at least several hours to run and may require allocation of a large amount of memory (e.g. 1500 MB) to complete:
//tracks the consumption of Butane in presence of O2.
//This example illustrates the use of pruning, as well
//as multiple reaction conditions. The example should
//take at least several hours to run and may require allocation
//of a large amount of memory (e.g. 1500 MB) to complete.
Database: RMG_database
//MaxCarbonNumberPerSpecies:
//MaxOxygenNumberPerSpecies:
//MaxRadicalNumberPerSpecies:
//MaxSulfurNumberPerSpecies:
//MaxSiliconNumberPerSpecies:
//MaxHeavyAtomPerSpecies:
PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END
PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END
ForbiddenStructures:
END
ReadRestart: no
WriteRestart: yes
TemperatureModel: Constant (K) 800 1000 2000
PressureModel: Constant (atm) 20 30 40
InitialStatus:
C4H10 (mol/cm3) 1 2
1 C 0 {2,S}
2 C 0 {1,S} {3,S}
3 C 0 {2,S} {4,S}
4 C 0 {3,S}
O2 (mol/cm3) 6.5 5.5
1 O 1 {2,S}
2 O 1 {1,S}
END
InertGas:
N2 (mol/cm3) 24.399 24.399
Ar (mol/cm3) 0 0
END
SpectroscopicDataEstimator: off
PressureDependence: off
//PressureDependence: ModifiedStrongCollision
//PDepKineticsModel: Chebyshev
FinishController:
(1) Goal Conversion: C4H10 0.7
(2) Error Tolerance: 0.5
DynamicSimulator: DASSL
//Conversions: AUTO
Conversions: AUTOPRUNE
TerminationTolerance: 1000
PruningTolerance: 1.0E-18
MinSpeciesForPruning: 1000
MaxEdgeSpeciesAfterPruning: 10000
Atol: 1e-18
Rtol: 1e-8
PrimaryKineticLibrary:
//Name: RMG-example
//Location: RMG_database/primaryReactionLibrary/Example
END
ReactionLibrary:
END
SeedMechanism:
//Name: Leeds
//Location: RMG_database/SeedMechanisms/combustion_core/version5
//GenerateReactions: yes
Name: GRIMech3.0
Location: GRI-Mech3.0
GenerateReactions: yes
//Name: Glarborg
//Location: RMG_database\SeedMechanisms\Glarborg\C3_light
//GenerateReactions: yes
END
ChemkinUnits:
A: moles
Ea: kcal/mol
This is an example illustrating the use of on-the-fly thermo calculations. Gaussian03 is used to estimate thermodynamic properties of cyclic species, like cyclopropane. In particular, the semi-empirical PM3 method, with RRHO treatment of partition functions is used. Without this feature, RMG would try to estimate thermodynamic properties of cyclic species using the typical Benson groups, and would only apply an appropriate ad hoc ring correction if it is in Ring_Library.txt. The example should take roughly 45 minutes to run and requires several additional dependencies, as described in the installation documentation.
//This is an example illustrating the use of on-the-fly thermo
//calculations. Gaussian03 is used to estimate thermodynamic
//properties of cyclic species, like cyclopropane. In particular,
//the semi-empirical PM3 method, with RRHO treatment of partition
//functions is used. Without this feature, RMG would try to estimate
//thermodynamic properties of cyclic species using the typical Benson
//groups, and would only apply an appropriate ad hoc ring correction
//if it is in Ring_Library.txt. The example should take roughly 45
//minutes to run and requires several additional dependencies, as
//described in the documentation.
Database: RMG_database
//MaxCarbonNumberPerSpecies:
//MaxOxygenNumberPerSpecies:
//MaxRadicalNumberPerSpecies:
//MaxSulfurNumberPerSpecies:
//MaxSiliconNumberPerSpecies:
//MaxHeavyAtomPerSpecies:
PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END
PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END
ReadRestart: no
WriteRestart: no
TemperatureModel: Constant (K) 1350
PressureModel: Constant (atm) 1
//thermo strategy? BensonOnly/QMforCyclics/Hybrid
ThermoMethod: QMforCyclics Gaussian03
MaxRadNumForQM: 0
CheckConnectivity: check
KeepQMFiles: no
InitialStatus:
Cyclopropane (mol/cm3) 6.829e-4
1 C 0 {2,S} {3,S}
2 C 0 {1,S} {3,S}
3 C 0 {1,S} {2,S}
END
InertGas:
N2 (mol/cm3) 0.8797
Ar (mol/cm3) 0.0e-6
END
SpectroscopicDataEstimator: off
PressureDependence: off
FinishController:
(1) Goal Conversion: Cyclopropane 0.9
(2) Error Tolerance: 0.1
DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1e-18
Rtol: 1e-8
PrimaryKineticLibrary:
END
ReactionLibrary:
END
SeedMechanism:
END
ChemkinUnits:
A: moles
Ea: kcal/mol
This example showcases RMG’s ability to model liquid-phase reaction systems.
// autoxidation of octane
Database: RMG_database
PrimaryThermoLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
Name: RMG-minimal
Location: primaryThermoLibrary
END
PrimaryTransportLibrary:
Name: GRIMech3.0
Location: GRI-Mech3.0
END
ReadRestart: no
WriteRestart: no
TemperatureModel: Constant (K) 500
PressureModel: Constant (atm) 1
/// THESE ARE THE IMPORTANT PARTS FOR LIQUID SIMULATIONS
EquationOfState: Liquid
Solvation: on octane
Diffusion: on 1.0e-3
InitialStatus:
Octane (mol/cm3) 6.154e-3
1 C 0 {3,S}
2 C 0 {4,S}
3 C 0 {1,S} {5,S}
4 C 0 {2,S} {6,S}
5 C 0 {3,S} {7,S}
6 C 0 {4,S} {8,S}
7 C 0 {5,S} {8,S}
8 C 0 {6,S} {7,S}
O2 (mol/cm3) 4.953e-6 ConstantConcentration
1 O 1 {2,S}
2 O 1 {1,S}
END
InertGas:
N2 (mol/cm3) 0.0
Ar (mol/cm3) 0.0
END
SpectroscopicDataEstimator: off
PressureDependence: off
// Change Goal ReactionTime: 10 (min) for a more realistic simulation
FinishController:
(1) Goal ReactionTime: 10 (sec)
(2) Error Tolerance: 0.5
DynamicSimulator: DASSL
TimeStep: AUTO
Atol: 1e-18
Rtol: 1e-8
PrimaryKineticLibrary:
END
ReactionLibrary:
END
SeedMechanism:
END
ChemkinUnits:
A: moles
Ea: kcal/mol
RMG 4.0+ can now handle systems involving sulfur-containing compounds. This example models the desulfurization of diethylsulfide in the presence of water.
// Diethylsulfide + H2O desulfurization
Database: RMG_database
MaxCarbonNumberPerSpecies: 18
MaxOxygenNumberPerSpecies: 3
MaxSulfurNumberPerSpecies: 3
PrimaryThermoLibrary:
Name: RMG_Default
Location: primaryThermoLibrary
Name: Sulfur_Thermo
Location: SulfurLibrary
Name: DFT_QCI
Location: DFT_QCI_thermo
END
PrimaryTransportLibrary:
END
ForbiddenStructures:
END
ReadRestart: No
WriteRestart: Yes
TemperatureModel: Constant (K) 673
PressureModel: Constant (Bar) 244.3
InChIGeneration: off
InitialStatus:
(1) DES (mol/cm3) 0.000363
1 C 0 {2,S}
2 C 0 {1,S} {3,S}
3 S 0 {2,S} {4,S}
4 C 0 {3,S} {5,S}
5 C 0 {4,S}
(2) H2O (mol/cm3) 0.0040
1 O 0
(3) ethanethial (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,D}
3 S 0 {2,D}
(4) hydro-ET (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,S} {4,S}
3 S 0 {2,S}
4 O 0 {2,S}
(5) hydro-ET-rad (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,S} {4,S}
3 S 1 {2,S}
4 O 0 {2,S}
(6) ethanal (mol/cm3) 0.0
1 C 0 {2,S}
2 C 0 {1,S} {3,D}
3 O 0 {2,D}
END
InertGas:
Ar (mol/cm3) 0
N2 (mol/cm3) 0
He (mol/cm3) 0
END
SpectroscopicDataEstimator: off
PressureDependence: off
FinishController:
(1) Goal Conversion: DES 0.10
(2) Error Tolerance: 0.50
DynamicSimulator: DASSL
Conversions: AUTO
Atol: 1E-18
Rtol: 1E-8
PrimaryKineticLibrary:
END
ReactionLibrary:
END
SeedMechanism:
Name: Hydrolysis
Location: Sulfur/Thial_Hydrolysis
GenerateReactions: no
END
ChemkinUnits:
Verbose: off
A: moles
Ea: kcal/mol